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The Bonded Water Molecule. I. The Effect of the Vibratory Motion on the Observed Geometry 
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Correction terms are derived for a water molecule bound in a crystal, making it possible to calculate 
the mean OH and HH distances and the mean HOH angle from the corresponding quantities deter- 
mined experimentally from neutron-diffraction data or by means of proton magnetic resonance. The 
correction terms depend on the matrix elements of a 9 x 9 generalized mean square matrix, (xtxj), where 
xt is the Cartesian displacement coordinates of the three atoms in a molecule. The matrix elements are 
given for different models of the motion and numerical values have been obtained for intercomparison. 
The numerical values have been calculated from a new model of the motion based on a normal co- 
ordinate analysis in a combined intramolecular and isotropic external potential. The riding corrections 
usually applied to OH distances are shown to be much smaller than physically more reasonable correc- 
tions. The mean HOH angle is found to be smaller than the observed value. Correcting for the motion 
as shown results in a typical water molecule in which the mean OH distance is elongated by 0.02 
to 0.98 A and the HOH angle is enlarged to 106 ° when the molecule is bonded. The correction term 
calculated for the H-H distance observed in a proton magnetic resonance study is shown to be differ- 
ent from a correction term derived earlier. 

Introduction 

In recent years a large amount of information on the 
geometry of molecules in crystals has accumulated. 
When one tries to organize this material for selected 
molecules looking for specific effects, one rapidly 
detects sources of systematic errors that complicate 
the analysis. 

The main purpose of this paper is to discuss the 
effects of motion on the observed geometry of a water 
molecule when bound in a crystal. The effects are ex- 
pected to be large for water with its small moments of 
inertia, introducing apparent distortions of the geom- 
etry. 

The geometry of a bonded water molecule can be 
determined in detail from neutron diffraction (n.d.) 
data, and to date the geometries of about 100 water 
molecules have been determined by this method 
(Ferraris & Franchini-Angela, 1972). The H - H  dis- 
tance can also be found from a proton magnetic 
resonance (p.m.r.) study and approximately the same 
number of cases have been studied by p.m.r. 

The data presented by Ferraris & Franchini-Angela 
(1972) show that the reported OH distances are gener- 
ally shorter and the HOH angles are generally larger 
in a bound water molecule compared with the mean 
dimensions of the free water molecule. Furthermore, 
the geometry varies within fairly large limits. In the 
free molecule at room temperature the mean OH dis- 
tance is 0.9743 A and the mean HOH angle 104.52 °. 
(Kuchitsu, 1971). The observed OH distances in the 
bonded water molecules are distributed about an 
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average value of 0.956 A_ with 3 z of the distances within 
_-2-0.024 A of this value. For  the HOH angles the 
average is 107.8 ° with ~- of the angles within 105 ° to 
111 ° (Ferraris & Franchini-Angela, 1972). 

It is generally agreed that the shortening of the OH 
distance can only be apparent. The observed distances 
are averages over the thermal motion of the molecule 
in the crystal. It is well known that the observed dis- 
tance will always be shorter than the mean distance 
(Busing & Levy, 1964). 

To calculate the effect of motion quantitatively, how- 
ever, requires a model of the motion. We shall in this 
paper make an intercomparison of the various models 
proposed earlier. Following Busing & Levy (1964) we 
shall give equations making it possible to calculate the 
mean OH and H - H  distances from the observed dis- 
tances, but the equations are in a form valid for any 
harmonic model of the motion. We also derive a similar 
equation relating the mean H - H  distance to the 
observed H - H  distance from a p.m.r, study. This equa- 
tion is shown to be different from an equation derived 
earlier for a specific model (Pedersen, 1964). The 
equations derived make it possible to relate H - H  
distances observed with p.m.r, and n.d. directly. 

The enlargement of the H - O - H  angle by on the 
average 3 ° is interesting if real. However, the effects of 
motion on this parameter have never been calculated. 
We shall show that the mean H - O - H  angle is smaller 
than the observed value, at least for the simple situation 
to be treated here. 

We attempt here to analyse trends and not water 
molecules in specific structures. The numerical values 
to be given have been calculated from a new model of 
the motion of a bonded water molecule. This model is 
presented in detail elsewhere (Pedersen, 1975). 
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G e o m e t r y  correc t ions  in n.d.  

In a crystal structure determination by diffraction 
methods the atoms are generally treated as inde- 
pendent. The atomic positions arrived at are, within 
the harmonic approximation, close to the mean atomic 
positions averaged over the motion of the atoms. 
Busing & Levy (1964) showed that the mean distance 
between two atoms (S)  is not equal to the distance be- 

" tween the mean positions of the atoms, but equal to 

( S ) =  So + (w2)/(2So). (1) 

Here So is the separation between the mean positions 
of the two atoms, i.e. the value usually reported as the 
observed interatomic distance, w is the relative vector 
displacement of the two atoms projected on the plane 
normal to the line between the two mean positions. To 
evaluate (w a) one has to know the relative motion of 
the two atoms. Only partial information on this motion 
is available from diffraction data; to calculate (w z) re- 
quires a model of the motion. Busing & Levy (1964) 
proposed one model called the riding model which has 
been much used in correcting OH distances. They also 
proposed an independent motion model and analysed 
the rigid-body molecular motion model earlier pro- 
posed by Cruickshank (1956). This model, in the 
generally valid form (Schomaker & Trueblood, 1968), 
has recently been applied to the water molecules in ice 
IX by La Placa, Hamilton, Kamb & Prakash (1973). 
We shall return to these models below. 

The same problem, as discussed by Busing & Levy 
(1964) concerning interatomic distances in solids deter- 
mined by diffraction methods, has also been extensively 
discussed by groups working on the determination of 
interatomic distances of gaseous molecules spectro- 
scopically or by means of electron diffraction (Robiette, 
1973). The quantity So given in equation (1) is equal to 
what Robiette and others call R,. However, the inter- 
atomic distances observed in the gas phase are more 
accurately defined than the distances observed in 
solids. The correction terms derived below are 
formally ( ( S ) - S o ) ,  but the corrections can also be 
regarded as an estimate of the uncertainty in the inter- 
atomic distances and angles due to the atomic motion. 

Equation (1) was derived by expanding the instan- 
taneous separation S of the two atoms in a Taylor 
series, averaging and keeping terms to second order. It 
is instructive to write the equation in the following 
form: 

t <x,x,>. (2) 
- ax,ax, / i = l  j = l  0 

x~ is the Cartesian displacement coordinates for the 
atoms defined in Fig. 1. (x ,x j )  is a typical element in a 
9 × 9 generalized mean-square amplitude matrix. We 
give the matrix this name because the three diagonal 
3 × 3 blocks are equal to the familiar U-matrices for the 
three atoms in the molecule referred to the axes defined 
in Fig. 1. 

The coordinate system in Fig. 1 has been chosen so 
that the mean position of H1 is at u~, 0, 0; H2 at Ua, 0,0 
and O at 0, u3, 0. We then define rio, r2o, c~, and e, by 

q0  = (u, = + u]) '/~ (3) 

i"20 = (/d 2 -~- ~ / i )  1 '2 ( 4 )  

sin 0~ 1 = - -  ~/1/?'10 ( 5 )  

sin ~z = uz/r2o. (6) 

The second derivatives needed in equation (2) have 
been calculated from the expressions for the instan- 
taneous separations of the atoms and by inserting we 
obtain: 

( R ) =  Ro + ((yZ) + (z2))/(ZR ) (7) 
where 

( y Z ) = ( ( X s - x z ) Z ) = ( x ~ ) + ( x ~ ) - Z ( x z x s )  (8) 

(z2) = ( (x6 -  xa)2) = (x]) + (x26) - 2(xax6) (9) 

( q )  = q0 +[cos z ~1((xl - x7) z) + sin' ~1((x2 - xs) 2) 

+ ( (xa-  xg) z) + sin 2~l((x~x8) + (XzX7) 

- (xlxz) - (X7Xs))]/(2r). (10) 

Analogously r2 is given by changing 1 to 2 in the r 's  
and xl to x4, x2 to Xs and xa to x6. 

The mean H - O - H  angle, (2~), can also be calculated 
from equation (2) setting S=2~.  A short analytical 
expression for (2~) has not been derived, but utilizing 
quantities needed above we can calculate the necessary 
second derivatives from: 

r, r2 cos 2~ = (x7 - xl - ul) (x7 - .v4 - u2) 

+ (us + xs - x2) (us + xs - Xs) 

+ (xg-  xD (xg-  x6) • 
Then 

={r cos 1~(2)~ ~ H j  ] 
OxiOxs o 

+ COS 2o~(LliL2j + L1jL2i ) 

- r sin 2~[Hi(Llj + Lzj) q- (Lli -k L2i)Hj] 

- r 2 cos 2~HiHj + A is}/(r z sin 2~) . 

(11) 

y 

, X 9 

- . __~...~", r 2 

2ct ,t 
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, ~; ........... :~ ........ /Ixs 

- ~ X 
.... ~-- x/. 

Z 

Fig. 1. The Cartesian displacement coordinates for an H20 
molecule used in the text. 
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Here 

Lkj = \ 8xj / o 

H ,=  \ ~ I o  

tj - \ 8xzSxj I o 

[82(rlr2 cos 2~)) 
A,j= t ~x,a~ o 

The H - H  distance from p.m.r. 

The H - H  distance, R, can also be determined by 
proton magnetic resonance (Dereppe & Van Meerssche, 
1968). This is due to a coupling between the nuclear 
magnetic dipole moments of the two protons that 
depends on a value of R. The coupling splits the mag- 
netic resonance spectrum to a doublet with a splitting, 
AH, given by 

A H =  ( 3p (3 cos z 0 - 1 ) ) .  (12) 

/z is the magnetic dipole moment of a proton and 0 the 
angle between R and the external magnetic field. The 
observed splitting is the average over the thermal mo- 
tion. This average was calculated earlier (Pedersen, 
1964) by assuming that 

A H =  R3 intramol, m o d e s  
((3 cos 2 0 -  1))librationa I modes" 

(13) 

The averaging was then performed on the basis of a 
specific model of the motion. We will here proceed 
differently. We define a direct observed H - H  distance 
RN by 

3/~ (3 cos 2 0 - 1 ) .  (14) AHobs . . . .  R~  

We define the direction of the magnetic field in the 
coordinate system in Fig. 1 by the unit vector eu=  
(A,B, C) where A, B and C are the direction cosines. 
We can use equation (2) for calculating the relation be- 
tween RN and R0 setting S=AH.  

After some calculation and rearrangements we ob- 
tain : 

RN=Ro+( (yZ)+(zE) ) / (2R) -2 (xZ) /R+P (15) 

P= [(A2- B 2) (y2)+(a~-C ~) (z') 
+ 8AB((x,x,)-  (x ,xs) -  (x~x,) + <x4xs)) 
• "Or- 8A C ( ( x l x 3 ) -  ( x l x 6 ) -  (x3x4) + (x4x6) )  

- 2BC((x2xa)-  ( x 2 x 6 ) -  (x3xs)  + (x5x6))]/ 

[(3A'-- 1)R] (16) 

(xZ)=(,(x ,-x4)Z)=(xax)-2(XlX4)+(,x])  . (17) 

This expression reduces to a similar expression recently 
evaluated by Diehl & Niederberger (1973) for a specific 
case. However, as shown below this expression is dif- 
ferent from the expression derived earlier. 

Substituting equation (7) in equation (15) we obtain 

( R ) =  RN+ 2(xZ)/R - P . (18) 

Usually RN is determined in the orientation where the 
splitting is maximum. Then A = 1, B - - C = 0  and P =  
((y2) + (z2))/(2R), i.e. 

( R ) = R N + 2 ( x Z ) / R - ( ( y Z ) + ( z E ) ) / ( 2 R ) .  (19) 

Discussion 

By comparing equation (7) with equation (19) we see 
that: 

R N - R o = ( ( y Z ) + ( z Z ) ) / R - Z ( x E ) / R  . (20) 

As shown below, the mean square amplitude along the 
H - H  direction, (x2), is small compared to the per- 
pendicular amplitudes, (yZ) and (z2). Therefore, 
RN>R0, i.e. the directly observed H - H  distance in a 
n.d. study, R0, will be smaller than the same distance 
determined by p.m.r. This is in agreement with E1 
Saffar (1966) who noted that R0 on the average was 
0.04 A, smaller than RN. 

We shall now discuss the motional corrections 
obtained from different models of the motion. The 
justification for introducing the independent motion 
model and the riding model is that the models are 
simple and that the corrections can be calculated from 
diffraction data. (w 2) in equation (1) is simply 

(wE)= (W~) + (W~) (21) 

with + for the independent motion model and - when 
atom 1 rides on atom 2. The consequences for the 
generalized mean square matrix (x~xj) are also simple. 
If the water molecule is assumed to consist of atoms 
moving independently of each other, then (x ix j )=O 
when i and j  are on different atoms. If H1 is assumed to 
ride on the oxygen atom then (x~xj)= (Xi+6Xj) when 
i = 1, 2 or 3 andj  = 7, 8 or 9. However, it is questionable 
whether either of these two models approximates to 
the true motion of the bound water molecule. 

A physically more reasonable model is the rigid-body 
motion model (RBM). In the RBM model the fact that 
the main contribution to the U matrices comes from 
the translational and torsional modes is utilized, and 
the higher-frequency intramolecular modes are either 
ignored or corrected for in a semiquantitative way. 
The elements of the U matrices can be built up from 
contributions from the three 3 x 3 matrices T, L and 
S. The translational motion of the molecule is described 
by the T matrix, and for the water molecule this is 
approximately equal to the U matrix for the O atom. 
The L matrix describes the torsional oscillations of the 
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water molecule and the unsymmetrical S matrix 
couples the translational and the torsional motion. 
The corrections to the observed distances depend only 
on the elements of the L matrix. 

We assume that the water molecule sits in a position 
with 2mm symmetry. Then the L matrix is a diagonal 
matrix and we write: 

L(1,1)=<O z) 

L(2, 2) = (Otz) 

L(3,3)= (O~ z ) (22) 

where w, t and r stand for respectively the wagging, 
twisting and rocking mode of the molecule. Then it 
follows from the general expression given by Busing & 
Levy (1964): 

(rx) =rio[1 +1(cos 2 ~1(02) + sin 2 2 2 ~ < 0 ,  ) +  ( 0 , ) ) 1  (23)  

( R ) =  R0[1 +½((0~ ) + (0~ z))] .  (24) 

It follows from the general theory for the RBM 
model that for a simple molecule such as the water 
molecule it is not possible to obtain the elements of the 
L matrix from the observed U matrices. [This point is 
discussed in detail by La Placa et al. (1973).] The ele- 
ments of the (x~xj) matrix are easily written down. 
Schomaker & Trueblood (1968) introduced the rota- 
tional displacement matrix D which we shall write to 
first order: 

D =  O, 0 w (25) 
0, Ow . 

The displacement coordinate x~ is then 

3 
xi = ~ Dikrk + h (26) 

k = l  

where the sum is the contribution from the rotation and 
h from the translation. We change the coordinate 
system in Fig. 1 so that the oxygen atom is at the origin, 
then H~ is at ~2, zTa, 0 and H2 at u2, /~3, 0. 

We can then calculate (x~xi) keeping only diagonal 
terms in L and T and ignoring all terms belonging to 
S. (A typical matrix element in L is (0 f l j )  in 
T (htj)  and in S (tflj).) We then obtain the following 
non-zero terms: 

(4)= = (o , r .  

< x l x 2 >  = - < x , x s >  = < x 2 x , >  = - <x4xs> = - <o >u,  u3 

( x l x T )  = = r , ,  

= (x ,>= <o, 

< x , x , )  = = = - ( 0 ,  )u2 + T22 

2 2 

< X 3 2 6 >  <02>1,12._ F 2 2, = - -  (0w)U 3 -a t- T33 

(X3Xg) = (X6Xg) = (x92) = 7"33. (27) 

If we insert these matrix elements in the general equa- 
tions for ( R )  [equation (7)] and (rx) [equation (10)] 
we obtain respectively equation (24) and equation (23), 
i.e. the equations are consistent. 

It follows from equation (27) that only (02)  and 
((0~) u~ + (0,2,.) u~) can be obtained from the observed 
U matrices. This is sufficient to calculate ( r l )  from 
equation (23), but not sufficient to calculate (R)  from 
equation (24). To be able to calculate (R)  we must 
take a look at the potential energy of the bound water 
molecule. We will return to this point below 

Inserting (x~xj) from equation (27) in equation (18) 
we obtain : 

(R)=R,~,{1-[(A2-B 2) (O~)+(A2-C 2) (0~)1/ 

(3A z - l ) } .  (28) 

Earlier we analysed the effects of motion on p.m.r. 
data differently starting from the basic assumption 
made in equation (13). We then found: 

S 10 O - H  : < r > -  r 0 - .c NC 

RB 
t- 4 
Z 
_ o  i 

uJ RIDI 
r~ 
O: i 
0 0 10 20 30 40 50 o 

FORCE CONSTANT (in N / m )  

Fig. 2. The calculated difference between the mean OH distance 
and the observed distance - the correction term - as a func- 
tion of the force constant in an isotropic external potential 
at 300 K. The correction term is calculated for different 
models of the vibratory motion of the water molecule as 
discussed in the text. 

~ 10~ 
._ v I 8v 
:E 

1- 

8 4  - 

t~ 2-  
c'r 
o 

0 

' ' H-JH : < R >  ' -R 0 J 

R B M ~ ' ~  

. . . . . .  i . . . . . .  -L . . . . . . .  _t 
10 20 30 40 50 

FORCE CONSTANT (in N/m) 

Fig. 3. The calculated difference between the mean H-H 
distance and the observed distance - the correction term - 
as a function of the force constant in an isotropic external 
potential at 300 K. The correction term is calculated for two 
models of the vibratory motion: rigid-body motion (RBM) 
and a normal coordinate analysis model (NCA). The inde- 
pendent motion model would give a result intermediate 
between the two curves given and is therefore omitted. 
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<3.> 3# 3<x> 6<xj_>__ 1 (29) 
R~- = ~  [ 1 -  R ~ +  Re l 

<3 cos z 0 - I > = 3 ( I - < 0 2 > - 2 < 0 ~ > ) A  2 

+3(l<02>-<OZt>)B2+3<O~>-l. (30) 

Inserting this in equation (13), rearranging and using 
the definition of RN in equation (14) and <R> in equa- 
tion (7) we obtain: 

<R>= RN[1 + 2<x2>/R 2 + 1(O2 - -  C 2) 
x(<O~>-<O2>)/(3A2-1)]. (31) 

<x 2> depends only on the intramolecular modes 
((x 2> is zero in the RBM model). We therefore clearly 
see that the result obtained here - equation (28) - is 
markedly different from the 1964 result: equation 
(31). This lack of agreement shows that the assumption 
made in equation (13) cannot be valid. 

We shall conclude this discussion by giving numer- 
ical values for the correction term - the difference be- 
tween the observed interatomic distance or angle and 
the mean interatomic distance or angle. The numerical 
values have been obtained from a more general model 
of the motion discussed in more detail elsewhere 
(Pedersen, 1975). In this model of the motion we cal- 
culate <x~xj> from a normal coordinate analysis of the 
water molecule in a combined intramolecular and 
external potential - we therefore call the model the 
NCA model. The intramolecular potential used is a 
harmonic potential in internal coordinates. As the 
external potential is used 

9 9 

2V= ~ ~ kux,x s . (33) 
i = l  j = l  

The force constants, k u and the intramolecular force 
constants, can be adjusted to what is known in a 
specific case. Here, we shall use the simplest possible 
situation: intramolecular force constants as in the 

t~-12 F ........................ T . . . . . . . . .  ~ .................. L H O H '  .................. ] 

~ - I 0  < 2 0 : > -  20:0 

~" ~ R B M  

z - 4  
o 
F- 

0 ..... J ~ . . . .  J 
(J 0 10 20 30 C0 50 

FORCE CONSTANT ( in  N / m )  

Fig. 4. The calculated difference between the mean H-O-H 
angle and the observed angle - the correction term - as a 
function of the force constant in an isotropic external 
potential at 300 K. The correction term is calculated for the 
rigid-body motion (RBM) model and the normal coordinate 
analysis (NCA) model. 

isolated water molecule [taken from Fifer & Schiffer 
(1970)], and 

9 

2 V = k  ~ x~. (34) 
i=1 

As judged from the calculated <X,Xs> and frequencies 
of the normal modes a reasonable range for k is 
0-50 N m-1. 

We have also calculated the corrections from the 
RBM model as a function of k. The frequency of one 
of the modes is generally in the harmonic approxima- 
tion : 

v= 2n 

where f is the force constant and m the mass being 
moved in that mode. Inserting the expressions for x~ 
given in equation (26) in equation (33) and keeping 
only diagonal terms we then find that both the transla- 
tional and the torsional rigid-body modes will be 
degenerate. 

Translational modes: 
1 l / 3 k  

f =  3k, m= M, i.e. vtr.~ns = ~ M 

Torsional modes: 

f =  2k, m = 2mH, i.e. Vtors = 2n mH 

m H is the mass of a H atom and M the molecular mass. 
When k increases from 5 to 50 N m -1 then Vtors in- 
creases from 291 to 921 cm -1 (Vtrans from 119 to 376 
cm-1). The mean square amplitudes are then (Born & 
Huang, 1954) : 

where 

T,~= T22= T3a= F(vt=.~)/M 
2 2 2 2 2 2 u3<O w> = =u2(Ot >=r0(0r  > F(vtors)/(2mn) 

F(v)= h ...... 2nv (0"5+ 1/[exp(hv/(ksT))- 1]). 

h is Planck's constant divided by 2n, kB the Boltzman 
constant and T the temperature in K. 

The results of the calculations are given in Figs. 2, 
3 and 4. We see that in the simple external potential 
chosen here the riding correction in the O-H distance 
is very much smaller than the more realistic corrections. 
For the H-H  distance the RBM model and the NCA 
model give about the same correction. The inde- 
pendent motion correction is found between the RBM- 
correction and the correction calculated for the NCA 
model. (For reasons of clarity, however, this is not 
given in Fig. 3.) Therefore, somewhat surprisingly, the 
independent correction is close to the result obtained 
from the NCA model both for the OH and the H-H  
distances. Whether this is generally true remains to be 
seen when the NCA model is applied to specific cases. 
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The mean value of the H O H  angle, (2e) ,  is smaller 
than the observed value (Fig. 4) for both the NCA and 
the RBM model. This might at least partly explain 
why the H - O - H  angle is generally observed to be 
about  3 ° larger when bound compared to the free 
molecule as pointed out in the Introduction. However, 
the correction factor is much larger for the N C A  
model than the RBM model. 

Compar ing  calculated and observed normal  mode 
frequencies and U matrices for the atoms a representa- 
tive value for k seems to be 20 N m - i  (Pedersen, 1974). 
For  this value of  k the observed value of  the OH dis- 
tance will be 0.04 A shorter than the mean value and 
the observed H O H  angle will be 2 ° larger than the 
mean. Compared  to the average values reported by 
Ferraris & Franchini-Angela  (1972) this implies that 
the corrected OH distance on the average is stretched 
0.02 A and the corrected H O H  angle is only enlarged 
1.5 ° when the molecule is bonded. However, large 
variations have been observed in the geometry from 
one structure to another.  It turns out to be difficult to 
systematize the observed variations. It is hoped that 
more reliable relations will be discovered from the 
geometry when the effect of  motion has been corrected 
for. The correction must then be done as outlined 

above on the basis of  a realistic potential fitted to the 
available information for each structure. 
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A simple, quantitative model describing the vibratory motion of a water molecule bound in a con- 
densed phase is presented. The model is based on a normal coordinate analysis of a bent XY2 molecule 
in a combined internal and external potential. The potential can be used to simulate the potential at 
a specific site in a crystal. Numerical values of the frequencies and eigenvectors, referred to Cartesian 
coordinates, are calculated from an isotropic external potential. The range of force constant in the 
external potential covered is from 0 to 50 N m-i .  The force constants in the internal potential can be 
chosen to make the calculated frequencies of the internal modes equal to the observed values. The 
nine calculated normal modes can be divided into ~oups of three: intramolecular, torsional and 
translational. The calculated frequencies of the torsional and translational modes are in the range 
observed for librational modes. The translational and the intramolecular modes are coupled making 
the calculated intramolecular frequencies increase with the strength of the external potential using a 
constant internal potential. From the model, the mean square amplitudes of vibration of the individual 
atoms are calculated. The calculated values are found to be in the range observed in neutron-diffrac- 
tion studies of hydrates. 

Introduction 

The free water molecule is a bent triatomic molecule 
with symmetry 2mm (C2v). The dimensions of  the 

* Also at the Central Institute for Industrial Research, Oslo 
3, Norway. 

isolated molecule and the rotary and vibratory energy 
levels are known in detail (Kern & Karplus,  1972). We 
focus the attention on the water molecule when bound 
in a crystal and propose a simple quantitative model 
as a f ramework for discussing experimental  results 
obtained in spectroscopic investigations and in neu- 
tron-diffraction studies. The results obtained with the 


